Some intro on thermal operations

Michał Horodecki
IFTIA, KCIK University of Gdansk

Thermal Operations

First Law: ensured by $\left[U_{R S}, H_{R}+H_{S}\right]=0$

Second Law: ensured by unitarity of $U_{R S}$.

Remark: In our approach, drawing work will be defined by state change!

Questions:

- Find condition for general transition $\left(\rho_{S}, H_{S}\right) \rightarrow\left(\sigma_{S}, H_{S}\right)$
- Define work, derive optimal work extraction

Theorem[HO2011]: For diagonal states,
state (ρ, H) can be transformed into (σ, H) by thermal operations

$$
\begin{gathered}
\text { if and only if } \\
f_{\rho}(x) \geq f_{\sigma}(x) \text { for all } x \in[0, Z] .
\end{gathered}
$$

Actually: immediate conclusion from Ruch\& Mead 1976 + Janzing et al. 2000]

Thermo-diagrams (Lorentz curves)

state (ρ, H)
 function $f_{\rho}:[0, Z] \rightarrow[0,1]$

energy
here Z is partition function of H

$$
p(E) \text { - eigenvalues of } \rho
$$

1) Rescale:

$$
p^{\prime}(E)=p(E) / e^{-\beta E}
$$

2) Order (decreasingly): $\quad \frac{p\left(E_{1}\right)}{e^{-\beta E_{1}}} \geq \frac{p\left(E_{2}\right)}{e^{-\beta E_{2}}} \geq \cdots \geq \frac{p\left(E_{n}\right)}{e^{-\beta E_{n}}}$
3) f is linear interpolation of points
$(0,0)$,
$\left(e^{-\beta \mathrm{E}_{1}}, p_{1}\right)$,
$\left(e^{-\beta \mathrm{E}_{1}}+e^{-\beta \mathrm{E}_{2}}, p_{1}+p_{2}\right)$,
... , $(Z, 1)$

Thermo-diagrams (Lorentz curves)

Order (decreasingly): $\quad \frac{p\left(E_{1}\right)}{e^{-\beta E_{1}}} \geq \frac{p\left(E_{2}\right)}{e^{-\beta E_{2}}} \geq \cdots \geq \frac{p\left(E_{n}\right)}{e^{-\beta E_{n}}}$

Denote: $p_{i}=p\left(E_{i}\right)$

Recall:

p_{i} 's are not ordered! they are β - ordered
3) f is linear interpolation of points:
$(0,0)$,

$$
\begin{equation*}
\left(e^{-\beta \mathrm{E}_{1}}, p_{1}\right), \quad\left(e^{-\beta \mathrm{E}_{1}}+e^{-\beta \mathrm{E}_{2}}, p_{1}+p_{2}\right), \tag{Z,1}
\end{equation*}
$$

Thermo-diagrams for two level systems

Two β-orders possible:

ρ is less excited
than Gibbs state
$p_{g r} \quad E_{g r}$
$p_{g r} \quad E_{g r}$
$p_{e x} \longrightarrow E_{e x}$
than Gibbs state

The form of diagram of eigenstate of energy:

Transition Law for diagonal states: Thermomajoriation

Theorem[H\&O Nat Com]:
 State (ρ, H) can be transformed into (σ, H) by thermal operations
 $$
(\rho, H) \xrightarrow{T O}(\sigma, H)
$$
 if and only if
 $$
f_{\rho}(x) \geq f_{\sigma}(x)
$$
 for all $x \in[0, Z]$.

Actually: immediate conclusion from Ruch\& Mead 1976 + Janzing et al. 2000]

Thermomajoriation criterion

Theorem[H\&O Nat Com]: state $(\rho, H$) can be transformed into (σ, H) by thermal operations if and only if $f_{\rho}(x) \geq f_{\sigma}(x)$ for all $x \in[0, Z]$.

Two level system: the same β-order

$$
\begin{aligned}
& \text { Example: } \\
& \text { For } \rho \text { and } \sigma \text { more excited } \\
& \text { than Gibbs state: } \\
& \rho \rightarrow \sigma \Leftrightarrow p_{\text {ex }}(\rho) \geq p_{\text {ex }}(\sigma)
\end{aligned}
$$

Remark:

This transition can be done by just mixing with Gibbs state

Questions:

- Find condition for general transition $\left(\rho_{S}, H_{S}\right) \rightarrow\left(\sigma_{S}, H_{S}\right)$
- Define work, derive optimal work extraction

Definition of deterministic work

[H\&O Nat Com]

We perform work W if we transform eigenstate of energy E to eigenstate of energy E^{\prime},
 with $E^{\prime}-E=W$

Fact: Without loss of generality, one can restrict to two level work system, which we call Wit (Work-bit)

Basic questions related to work

- $\rho \rightarrow W$ (maximal extractable work)

Heat bath

- $W \rightarrow \rho$ (minimal work needed to form state)

Heat bath

Most general question:

- $\rho+W \rightarrow \sigma$

Heat bath

A primitive: work rescaling

How are related diagrams of

- $\rho_{S} \otimes|W\rangle\langle W|$
- $\rho_{S} \otimes|0\rangle\langle 0|$
- ρ_{s} itself

Domains:

- $f_{\rho \otimes|W\rangle\langle W|}:\left[0, Z_{S} Z_{W}\right] \rightarrow[0,1]$
- $f_{\rho \otimes|0\rangle\langle 0|}:\left[0, Z_{S} Z_{W}\right] \rightarrow[0,1]$
- $f_{\rho}: \quad\left[0, Z_{S}\right] \rightarrow[0,1]$

Let E_{1}, E_{2}, E_{3} be β-ordered energies with respect to ρ

Conclusion:

- All diagrams nontrivial only for $x \in\left[0, Z_{S}\right]$
- The diagram of $\rho_{S} \otimes|W\rangle\langle W|$ is obtained from that of ρ_{S} by rescaling x-axis .
- The diagram of $\rho_{S} \otimes|0\rangle\langle 0|$ is the same as that of ρ_{S}

A primitive: work rescaling

Conclusion:

- All diagrams nontrivial only for $x \in\left[0, Z_{S}\right]$
- The diagram of $\rho_{S} \otimes|W\rangle\langle W|$ is obtained from that of ρ_{S} by rescaling x-axis .
- The diagram of $\rho_{S} \otimes|0\rangle\langle 0|$ is the same as that of ρ_{S}

Law of transitions including work

Theorem [HO]: minimal work needed to transform ρ into σ is given by:
$W(\rho \rightarrow \sigma)=\min \left\{W: f_{\rho}\left(x e^{-\beta W}\right) \geq f_{\sigma}(x)\right\}$

In particular:

$$
\begin{gathered}
W_{\text {ext }}=\Delta F_{\min } \\
W_{\text {form }}=\Delta F_{\max }
\end{gathered}
$$

PUZZLE

Work is defined in terms of state change. But everything we can do to the state is determined by thermomajorization.

Therefore one must be able to derive fluctuation relations from thermal operations.
But: so far we considered only deterministic work snd only two possible values of work

Let us be more general: apply paradigm of thermal operations to a) consider non-deterministic work -> distribution of work
b) consider other batteries than wit

Puzzle: if we thermalize wit, we obtain positive work gain seems to contradict to fluctuation theorem.

Solution: Alhambra, Masanes, Oppenheim and Perry. ->
Translational invariant battery - weight.

But, then Wit in trouble $:$

Using wit we get things not allowed by fluctuation relations.
Can we now treat seriously the formula below????

$$
W(\rho \rightarrow \sigma)=\min \left\{W: f_{\rho}\left(x e^{-\beta W}\right) \geq f_{\sigma}(x)\right\}
$$

Looks like our results were ruined in front of our eyes...

We sent Patryk Lipka-Bartosik for the expedition to

Thermo-majoriation for two-level systems

Two level system: the same β-order

Case (1):

For ρ and σ more excited than Gibbs state:
$\rho \rightarrow \sigma \Leftrightarrow p_{\text {ex }}(\rho) \geq p_{\text {ex }}(\sigma)$
i.e. we can dexcite towards Gibbs state

Case (2):
For ρ and σ less excited than Gibbs state:

$$
\rho \rightarrow \sigma \Leftrightarrow p_{e x}(\rho) \leq p_{e x}(\sigma)
$$

i.e. we can excite towards Gibbs state

Thermo-majoriation for two-level systems

Two level system: different β-order

more excited
than Gibbs $\quad \begin{aligned} & \text { less excited } \\ & \text { than Gibbs }\end{aligned}$

less excited
than Gibbs $\rightarrow \quad \begin{aligned} & \text { more excited } \\ & \text { than Gibbs }\end{aligned}$

Gibbs state

