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Objectives of the inquiry

2 kinds of objectives

Classical stochastic thermodynamics with information flows
I Develop a theory of continuous information flow
I Extend optimal work extraction strategies in this context

Quantum stochastic thermodynamics
I Develop a transparent classical counterpart of quantum trajectories
I Get a hint for good definitions
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Model considered

A classical 2-level system with tunable energy

Markov process Mt ∈ {0, 1} with energy
dependent jump rates:

λ+ = λ

λ− = λe−βEt

With pt = Prob[Mt = 1] the master
equation reads:

∂tpt = −λ− pt + λ+ (1− pt)

The equilibrium probability is Boltzmann:

pt −→
t→+∞

peq = e−βEt

1 + e−βEt
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Thermodynamical quantities

I Internal Energy:

Ut = Mt × Et

I Work:
δWt = Mt dEt

I Heat:
δQt = Et dMt

First law

dUt = δWt + δQt
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Thermodynamical quantities – averages
I Internal Energy:

E[Ut ] = E[Mt ]× Et = pt × Et

I Work:

E[δWt ] = E[Mt ] dEt = pt dEt

I Heat:

E[δQt ] = Et E[dMt ] = Et dpt

First law – average

E[dUt ] = E[δWt ] +E[δQt ]
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Standard questions

Converting information into work E[∆W ] = − 1
β
·∆I

Given a certain initial probability p0 6= peq on M0, how much work can one extract:
I In infinite time?
I In finite time?
I With what protocol {Et}?
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Infinite time

Optimal “Landauer” protocol:
I Apply an instant quench so that p0 is thermal for some energy Eth

I Slowly bring the energy Et back to 0.

E[∆W ] = p0 · (Eth − 0)︸ ︷︷ ︸
quench

+
∫ +∞

0
pt dEt︸ ︷︷ ︸

adiabatic

= − 1
β

p0 log
[

p0

1− p0

]
+
∫ 0

Eth

p(E) dE

= 1
β

[
p0 log(p0) + (1−p0) log(1−p0)−log(2)

]
= 1
β

∆S = − 1
β

∆I
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Finite time1

Objective
Find:

min
{E}

E[∆W ] = min
{E}

∫ tf

0
pt(E) dEt

under the constraint Etf = 0 and ∂tpt = −λe−βEt pt + λ (1− pt)

Standard optimal (non-stochastic) control problem.

Solved with Euler-Lagrange equation
⇒ transcendental 2-jump solution

1see e.g. Bauer et al J. Stat. Mech. (2014) P09010 and Esposito et al (2010) EPL 89 20003
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Local conclusion

A given amount of information can be used to extract work which is on average:
= Landauer bound for infinite time
≤ Landauer bound for finite time

In any case it is single-shot.
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A hidden Markov model2 (HMM)
Imperfect observations of a Markov process

For example:

P[Xti |Mti ] ∝ exp
(
−ε · (Xti −Mti )2

2

)
0 1

2see e.g. Bechhoefer (2015) New J. Phys. 17 075003
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A hidden Markov model

We are interested in the filtered probability:

~pt = E[Mt |Xt1 , · · · ,Xti , ti ≤ t < ti+1]

useful for the purpose of control.

Subtlety: we can define a fluctuating “work” in real time ~Wt =
∫ t

0 ~pudEu s.t.:
I E[ ~Wt ] = E[Wt ]
I but ~Wt is NOT the best estimate of Wt

I the fluctuations of ~Wt are meaningless
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Continuum limit

Go from discrete weak classical measurements to continuous measurements. Take
I Infinitely short time between measurements ∝ ε→ 0
I Infinitely bad resolution ∝

√
ε→ 0

One can show:

Continuous limit
The filtered probability verifies:

d~pt = −λ+(E)~pt dt + λ−(E)(1− ~pt) dt
standard master equation

+√γ ~pt(1− ~pt) dBt
information acquisition

The “measurement” signal:
Xt = ~pt + 1

√
γ

dBt

dt

where Bt is a Wiener process (Brownian motion), in Itô convention.

Link with stochastic control theory: Kushner-Stratonovich filtering equation.
Link with quantum mechanics: Belavkin equation in the fully diagonal case.

13 / 21



Continuum limit

Go from discrete weak classical measurements to continuous measurements. Take
I Infinitely short time between measurements ∝ ε→ 0
I Infinitely bad resolution ∝

√
ε→ 0

One can show:

Continuous limit
The filtered probability verifies:

d~pt = −λ+(E)~pt dt + λ−(E)(1− ~pt) dt
standard master equation

+√γ ~pt(1− ~pt) dBt
information acquisition

The “measurement” signal:
Xt = ~pt + 1

√
γ

dBt

dt

where Bt is a Wiener process (Brownian motion), in Itô convention.
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Comments

d~pt = −λ+(E)~pt dt + λ−(E)(1− ~pt) dt
standard master equation

+√γ ~pt(1− ~pt) dBt
information acquisition

I information extraction is a universal non-linear stochastic term of zero mean
I continuous but not differentiable –careful!–
I Bt has nothing to do with thermal processes
I the measurement has no influence on the dynamics, i.e. with pt = E[~pt ]:

∂tpt = −λ− pt + λ+ (1− pt)

at least as long as Et does not depend on {Xu}.
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Basic behavior
d~pt = −λ+(E)~pt dt + λ−(E)(1− ~pt) dt

standard master equation
d~pt = √γ ~pt(1− ~pt) dBt

information acquisition

d~pt = −λ+(E)~pt dt + λ−(E)(1− ~pt) dt +√γ ~pt(1− ~pt) dBt

γ = 1 γ = 100

15 / 21



Basic behavior
d~pt = −λ+(E)~pt dt + λ−(E)(1− ~pt) dt

standard master equation
d~pt = √γ ~pt(1− ~pt) dBt

information acquisition

d~pt = −λ+(E)~pt dt + λ−(E)(1− ~pt) dt +√γ ~pt(1− ~pt) dBt

γ = 1 γ = 100
15 / 21



Thermodynamical quantities
I Internal Energy:

~Ut = ~pt × Et

I “Work”:

δ ~Wt = ~pt dEt
backward Itô

I “Heat”:

δ~Qt = Et d~pt
forward Itô

First law

formal d~Ut = δ ~Wt + δ~Qt

true average dE[~Ut ] = E[δ ~Wt ] +E[δ~Qt ]
= E[δWt ] +E[δQt ]
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Infinite time

Protocol
I Keep the energy Et such that ~pt is thermal for this energy:

d~pt = −λ+(E)~pt dt + λ−(E)(1− ~pt) dt︸ ︷︷ ︸
=0

+√γ ~pt(1− ~pt) dBt

⇒ effectively cancels the jumps (in the probability),
⇒ drags the (forward) probability ~pt towards 0 or 1

I Wait some time ∆t or wait to reach some threshold Ẽ .
I Stop measuring and slowly bring the energy Et back to 0.

The Landauer bound is reached exactly.
Non trivial:
Work and Information exchange terms come
from Itô’s lemma; no non-trivial theory
with smooth evolution.
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Real-time

Hamilton-Bellman-Jacobi equation...

seems very non trivial, any idea?

18 / 21



Classical comments

I It is possible to construct theories with continuous information flow
I Information flow appears as a universal non-linear non-differentiable term in the

master equation
I Thermodynamical quantities seem to fluctuate because of surprise
I These fluctuations are meaningless
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Quantum comments

Continuous quantum trajectories are very similar (identical in the diagonal case):

dρt = L(ρt) dt + {Oρ+ ρO − 2ρtrOρ} dBt

Work and heat are usually3 defined this way:

d(trHtρt)
dUt

= tr(Ht dρt)
δQt

+ tr(dHt ρt)
δWt

which correspond to δ ~Wt and δ~Qt . But:
I “Forward” stochastic quantities are useful for computations but not necessarily

physically meaningful.
I Not everything that is non-unitary is heat.

⇒ use some correspondence principle to guide the quantum ?

3Elouard et al. npj Quantum Information 3, 9 (2017) — Alonso, Lutz, Romito PRL 116, 080403 (2016)
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Conclusion

1. Information flows can be continuous (non-differentiable) and take a universal form
2. They can be used for work extraction via feedback control:

I infinite time is manageable, information flow is digested optimally
I finite time is a hard optimization problem

3. Classical + continuous information flow ∼ continuous quantum trajectories
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