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0. Conserved quantities
System: Hilbert space ! (implicit) with 
Hamiltonian H=Q  and other observables 
Q , …, Q  (aka ”charges”).

0
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Note: Q  do not have to commute with 
each other, nor with the Hamiltonian!

j

However, assume them to be extensive in 
composite systems (more later).

[Examples: Particle numbers; directional 
spin observables; …]



0. …and Gibbs states
Max-entropy principle [Jaynes, Phys. Rev. 1957]: 
Given only the expectation values

   v  = <Q > = Tr ρQ ,

most rational state assignment is the one 
maximizing the von Neumann entropy

   S(ρ) = - Tr ρ log ρ.

j jj

Has Grand Canonical Gibbs (GCG) form

   γ(v) = - exp(-βH-∑ μ Q ),

   Z   = Tr exp(-βH-∑ μ Q ).
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Grand canonical Gibbs (GCG) form:

   γ(v) = - exp(-βH-∑ μ Q ),

   Z   = Tr exp(-βH-∑ μ Q ).
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Expectation values v=(v , v , …, v ) and 
the (β, μ , …, μ ) determine each other 
one-to-one; ”chemical potentials” -μ /β.j
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*Why expectation values?

*Why entropy?

Give two justifications of GCG from first 
principles: one microcanonical (equilibrium), 
the other resource theoretic (passivity).



1. Microcanonical route
(From now on: only H and one other charge Q)

!

H, Q(1) (1)

!

H, Q(2) (2)

!

H, Q(n) (n)

Let the system be in contact with many 
replicas of itself - quantities extensive:

H = - ∑ H,    Q = - ∑ Q.(t)
t=1

n
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Well-known, simple case: [H,Q]=0, so 
that H and Q are simultaneously 
diagonalized, and so H and Q.

_ _

Now: Let " simultaneous eigenspace of 
H and Q with eigenvalues E and N, resp.
_ _

Microcanonical state Ω = uniform density 
on ".

It follows that single-site states

   Ω = Tr  Ω are ≈ γ(E,N)!t ≠t



Single-site states Ω = Tr  Ω are ≈ γ(E,N)!t ≠t

- ∑ D(Ω ||γ(E,N)) = Tr Ω log Ω - Tr Ω log γ(E,N)t t t t

= - S(Ω )
t

= - log Z -βH -μQ(t) (t)



Single-site states Ω = Tr  Ω are ≈ γ(E,N)!t ≠t

- ∑ D(Ω ||γ(E,N)) = - - ∑ S(Ω )t tt=1
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= βE+μN

= <βH+μQ>γ(E,N)
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Single-site states Ω = Tr  Ω are ≈ γ(E,N)!t ≠t

- ∑ D(Ω ||γ(E,N)) = - - ∑ S(Ω )t tt=1
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                  ≤ S(γ(E,N)) - - S(Ω)

                  = S(γ(E,N)) - - log |"|

                  = o(1)
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Leading order of |"| 
from combinatorics…



If [H,Q]≠0, H and Q now don’t have 
joint eigenspaces ⚡

_
However, [H,Q]=O(1/n), so for large n 
expect ”almost commutation”…

_

Indeed, [Ogata, J Func. Anal. 2013] proved that 
there exist H=Q  and Q  that commute,

and ||Q - Q || →0 for n→∞.

^ ^ ^
j0
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Operator norm, i.e. 
largest singular value
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expect ”almost commutation”…
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Can exploit this to construct an approximate 
microcanonical (a.m.c.) subspace consisting of 
the ”almost-eigenstates” of the observables.



Say that ρ is almost E-eigenstate of H, 
if it has most of its amplitude in the 
eigenvalue band [E±η], i.e. Tr ρΠ  ≥ 1-δ.E

η

Projector onto eigenspaces 
of H with eigenvalues E±η.

_

_



Approximate microcanonical (a.m.c.) subspace 
" in !  (with projector P) satisfies:

(i) Every state ω supported on " is an 
almost-eigenstate of H and Q:       
Tr ωΠ  ≥ 1-δ & Tr ωΠ  ≥ 1-δ.


(ii) Every almost-eigenstate ω of H & Q, 
i.e. Tr ωΠ  ≥ 1-δ’ & Tr ωΠ  ≥ 1-δ’, has 
large overlap with ": Tr ωP ≥ 1-ε.

⊗n

Say that ρ is almost E-eigenstate of H, 
if it has most of its amplitude in the 
eigenvalue band [E±η], i.e. Tr ρΠ  ≥ 1-δ.E

η

_

E
η

N
η

E
η’

N
η’



Approximate microcanonical (a.m.c.) subspace 
consists of precisely the almost-eigenstates 
of the observables; parameters (ε,η,η’,δ,δ’) "

For instance in the commuting case, P=Π Π  
is a.m.c. subspace for large enough n, with 
parameters (ε,η,η’=η,δ,δ’=ε/2).

E
η

N
η



Result 1: For consistent values of E & N 
[i.e. there is a γ(E,N)], ε>2δ’>0, η>η’>0 
and δ>0, and large enough n, there exists a 
non-zero a.m.c. subspace ".

Idea: Approximate H, Q by H, Q, and let P 
be the product of the almost-eigenstate 
projections of those with values E, N (±η)

_ ^_ ^ }{

Approximate microcanonical (a.m.c.) subspace 
consists of precisely the almost-eigenstates 
of the observables; parameters (ε,η,η’,δ,δ’) "



Result 1: For consistent values of E & N 
[i.e. there is a γ(E,N)], ε>2δ’>0, η>η’>0 
and δ>0, and large enough n, there exists a 
non-zero a.m.c. subspace ".

Result 1’: Using only information theory 
ideas, can get ε>poly(n)δ’>0, and δ>0 exp. 
small in n; furthermore, η>η’>0 can be as 
small as O((log n)/√n) [AW, in preparation].
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Approximate microcanonical (a.m.c.) subspace 
consists of precisely the almost-eigenstates 
of the observables; parameters (ε,η,η’,δ,δ’) "



Result 2: Given an a.m.c. subspace " with 
projector P and uniform density Ω, for 
most t, Ω ≈ γ(E,N).t

Proof even more info theoretic now:

- ∑ D(Ω ||γ(E,N)) ≤ S(γ(E,N)) - - S(Ω) + O(η)tt=1

n
n
1

n
1

Observe that ω=γ(E,N)  is an almost-
eigenstate for E, N (±η), and hence has 
high probability on P. By Schumacher 
quantum data compression, 

  S(Ω) = log |"| ≥ n S(γ(E,N)) - O(√n).

⊗n

_



Result 2: Given an a.m.c. subspace " with 
projector P and uniform density Ω, for 
most t, Ω ≈ γ(E,N).t

Proof even more info theoretic now:

- ∑ D(Ω ||γ(E,N)) ≤ S(γ(E,N)) - - S(Ω) + O(η)tt=1

n
n
1

n
1

_
- ∑ D(Ω ||γ(E,N)) ≤ O(1/√n) + O(η).

In general, " may not be permutation 
symmetric, so need average over Ω .! t



2. Resource theory: passivity
Justify Gibbs states as the unique 
”completely passive” states, from which 
no work can ever be extracted [Pusz/
Woronowicz, CMP 1978; Lenard, J Stat. Phys. 1978]. 
This is the only way in which you can 
draw thermal states for free from the 
bath. It also defines temperature: e

Redo this here under conservation of 
the charges Q …j

-βH



Recall P-W-L model: Couple the system 
to a weight to extract work.

M

ρ

quantum

system

weight

(battery)

Can effect any U on ! (suitable inter-
action with weight conserves energy)

ΔE = Tr ρH - Tr UρU H is translated into 
(expected) raising of the weight.

†



Def: State ρ is passive if for all U, ΔE ≤ 0.

It is completely passive if ρ  is passive 
w.r.t. H, for all n.

⊗n
_

Easy to see that passivity is equivalent to 
[ρ,H]=0, and population p(E) of energy E 
is non-increasing with growing E.

P-W-L prove: ρ is completely passive iff it 
is of Gibbs form γ(E) = - exp(-βH).1

Z

[Cf. also Alicki/Fannes, PRE 2013]



How to bring charges into play? 

M

ρ

quantum

system

weight

(battery)

[1512.01189 & Guryanova et al., 1512.01190]

particle

reservoir

Need a battery for each kind of charge, 
including energy. Can still do any unitary 
on the system using a suitable ”reference 
frame” state in the batteries to enforce 
global conservation. 



How to bring charges into play? 

M

ρ

quantum

system

weight

(battery)

[1512.01189 & Guryanova et al., 1512.01190]

particle

reservoir

However, turns out that having access to 
infinitely many γ(E,N), can trade H for Q 
freely subject to βΔE + μΔN ≤ 0. If you 
find that surprising, consider that γ(E,N) 
is not completely passive for H…



How to bring charges into play? 

M

ρ

quantum

system

weight

(battery)

[AW, in preparation]

particle

reservoir

For passivity theory: Constrain allowed 
operations to ΔN=0, i.e. no change of the 
charges on the batteries. 

In fact: Want U acting on ! to conserve 
Q (all Q ).j



[AW, in preparation]

In fact: Want U acting on ! to conserve 
Q (all Q ).j

Clearly a problem when [H,Q]≠0: 
[U,Q]=0 would mean that we cannot 
work in the energy eigenbasis…(?)

Even have a problem when [H,Q]=0: let 
E  and N  be the H and Q eigenvalues 
in joint eigenbasis |α>, and assume the 
N  to be incommensurate. Then on n 
copies, allowed U must automatically 
conserve the energy!

α α

α



[AW, in preparation]

Def: On n copies, allow asymptotically 
charge conserving unitaries, i.e.

|| Q - U QU || → 0.

Motivates the following new rules:

†_ _

(Equivalent to saying that if ρ is eigen-
state of Q, then UρU  is an almost-
eigenstate.)

†



[AW, in preparation]

Def: On n copies, allow asymptotically 
charge conserving unitaries, i.e.

|| Q - U QU || → 0.

Motivates the following new rules:

†_ _

Result 3: The GCG states γ(E,N) are 
asymptotically passive, meaning that no 
rate of work per copy can be extracted 
under asymptotically charge conserving U.

(This follows already from [Guryanova et al., 

1512.01190] under ΔN→0.)



Result 4: For any state ρ, the asymptotic 
rate of work per copy that can be 
extracted by the allowed operations is

ΔE = E-E , where E = Tr ρH, N = Tr ρQ, and 
E  := min Tr σH s.t. S(σ)≥S(ρ), Tr σQ = N

(= energy of the GCG with same <Q> and 
entropy as ρ). I.e. no non-GCG state is 
asymptotically passive.

[1512.01189 & 1512.01190; AW, in preparation]

0
0



Result 4: For any state ρ, the asymptotic 
rate of work per copy that can be 
extracted by the allowed operations is

ΔE = E-E , where E = Tr ρH, N = Tr ρQ, and 
E  := min Tr σH s.t. S(σ)≥S(ρ), Tr σQ = N

(= energy of the GCG with same <Q> and 
entropy as ρ). I.e. no non-GCG state is 
asymptotically passive.

[1512.01189 & 1512.01190; AW, in preparation]

0
0

ΔE = kT D(ρ||γ(E ,N)) #0



Result 4: For any state ρ, the asymptotic 
rate of work per copy that can be 
extracted by the allowed operations is

ΔE = E-E , where E = Tr ρH, N = Tr ρQ, and 
E  := min Tr σH s.t. S(σ)≥S(ρ), Tr σQ = N

(= energy of the GCG with same <Q> and 
entropy as ρ). I.e. no non-GCG state is 
asymptotically passive.

[1512.01189 & 1512.01190; AW, in preparation]

0
0

Justifies γ(E,N) as free state in thermo-
dynamic resource theory with conserved 
quantities; and β, μ as intrinsic properties.



Proof ideas: 

In one direction, cannot extract more work 
because ω = Uρ  U has the same entropy 
as ρ , but almost the same expectation of 
Q, so Tr ωH is essentially lower bounded by 
E …

_ _

0

⊗n †

Work extraction protocol is fun - it uses 
a.m.c. subspaces and information theory 
ideas.

⊗n



Proof ideas (Work extraction protocol):
1. Construct a.m.c. subspaces " for 
(E=<H>, N=<Q>) and "  for (E ,N). Both 
may be assumed to lie inside an a.m.c. # 
for N=<Q> alone: " ⊂ # ⊃ " .

0 0

0

2. " is a high-probability subspace for ρ , 
so we can find inside it a minimal typical 
subspace $ ⊂ ", of log |$| ≾ n S(ρ).

3. Otoh, "  is a high-probability subspace 
for γ(E ,N), so

     log |" | ≿ n S(γ(E ,N)) = n S(ρ).

0
0

0 0

⊗n



Proof ideas (Work extraction protocol):
1. Construct a.m.c. subspaces " for 
(E=<H>, N=<Q>) and "  for (E ,N). Both 
may be assumed to lie inside an a.m.c. # 
for N=<Q> alone: $ ⊂ " ⊂ # ⊃ " ;

0 0

0
log |$| ≾ n S(ρ);
log |" | ≿ n S(γ(E ,N)) = n S(ρ).0 0

4. Thus there is an isometry U : $ → " , 
which we can extend to a unitary U on #, 
and then trivially (by identity) to the whole 
space. Check that it does what we want.

0



3. Discussion
What we did: GCG states justified as 
equilibrium states and asymptotically 
passive states, even when charges do not 
commute. Tool: a.m.c. subspace.

[Guryanova et al., 1512.01190] show that in 
the presence of multiple observables, and 
free γ(E,N), the only quantity obeying a 
second law is βH+μQ.

Can replicate this by composing 
asymptotically conserving operations.



3. Discussion
Beginnings of a resource theory: 
Peculiar due to necessity of batteries 
that double as reference frame to deal 
with conservation laws. Seems that we 
can only deal with work/charge 
extraction on expectation. Fluctuations?

However, the many-copy protocols 
suggest deterministic work/charge 
extraction - open how to characterize 
the kind of reference frames needed to 
implement those unitaries…



3. Discussion
In fact, it’s open even how to think of 
separate batteries in the non-commuting 
case - in 1512.01189 have an ”integrated 
battery + reference” for all Q , and 
actually all elements of the Lie algebra 
generated by them. How to avoid this 
overkill?

j



3. Discussion
A.m.c. subspace a robust extension of 
microcanonicality to non-commuting 
quantities. Can we do it also for a 
general bath (≠ replicas of the system)?

Can we impose further constraints on 
the a.m.c. subspace? E.g., would be nice 
if we could get its projector to 
commute with at least H…

Other applications or generalizations of 
a.m.c. subspaces?


